129
Role of Hydropriming and Magneto-Priming in Developing Stress Tolerance
Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M., & Zhang, G., (2009). Effect of cadmium
and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum
aestivum L.). Bull Environ. Contam. Toxicol., 82, 772–776. https://doi.org/10.1007/
s00128-009-9707-7.
Shannon, M. C., & Grieve, C. M., (1998). Tolerance of vegetable crops to salinity. Scientia
Horticulturae, 78, 5–38. https://doi.org/10.1016/S0304-4238(98)00189-7.
Sharma, S. S., & Dietz, K. J., (2006). The significance of amino acids and amino acid-derived
molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental
Botany, 57, 711–726. https://doi.org/10.1093/jxb/erj073.
Shine, M. B., & Guruprasad, K. N., (2012a). Impact of presowing magnetic field exposure of
seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of
maize under field conditions. Acta Physiol. Plant., 34, 255–265.
Shine, M. B., & Guruprasad, K. N., (2012b). Oxyradicals and PS II activity in maize leaves in
the absence of UV components of solar spectrum. J. Biosci., 37, 703–712.
Shine, M. B., Guruprasad, K. N., & Anand, A., (2012). Enhancement of germination,
growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field.
Bioelectromagnetics, 32(6), 474–484.
Siddique, M. R. B., Hamid, A., & Islam, M. S., (2000). Drought stress effects on water
relations of wheat. Bot. Bull. Acad. Sin., 41, 35–39.
Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K., (2013). Chromium toxicity
and tolerance in plants. Environ. Chem. Lett., 11, 229–254. https://doi.org/10.1007/
s10311-013-0407-5.
Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D’Souza,
S. F., (2010). Comparative evaluation of hydro-, chemo-, and hormonal-priming methods
for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta
Physiol. Plant., 32, 1135–1144. https://doi.org/10.1007/s11738-010-0505-y.
Sugie, A., Naydenov, N., Mizuno, N., Nakamura, C., & Takumi, S., (2006). Overexpression of
wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive
oxygen species under low temperature in transgenic Arabidopsis. Genes Genet. Syst., 81,
349–354. https://doi.org/10.1266/ggs.81.349.
Sung, J., & Chiu, K., (1995). Hydration effect on seedling emergence strength of watermelon
seeds differing in ploidy. Plant Sci., 110, 21–26.
Suzuki, N., & Mittler, R., (2006). Reactive oxygen species and temperature stresses: A
delicate balance between signaling and destruction. Physiol. Plant., 126, 45–51. https://doi.
org/10.1111/j.0031-9317.2005.00582.x.
Taylor, A. G., Allen, P. S., Bennett, M. A., Bradford, K. J., Burris, J. S., & Misra, M.
K., (1998). Seed enhancements. Seed Sci. Res., 8, 245–256. https://doi.org/10.1017/
S0960258500004141.
Thakur, M., Sharma, P., & Anand, A., (2019). Seed priming-induced early vigor in crops: An
alternate strategy for abiotic stress tolerance. In: Hasanuzzaman, M., & Fotopoulos, V.,
(eds.), Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.
org/10.1007/978-981-13-8625-1_8.
Thakur, M., Sharma, P., Anand, A., Pandita, V. K., Bhatia, A., & Pushkar, S., (2020). Raffinose
and hexose sugar content during germination are related to infrared thermal fingerprints of
primed onion (Allium cepa L.) seeds. Front. Plant Sci., 11, 579037. https://doi.org/10.3389/
fpls.2020.579037.