129

Role of Hydropriming and Magneto-Priming in Developing Stress Tolerance

Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M., & Zhang, G., (2009). Effect of cadmium

and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum

aestivum L.). Bull Environ. Contam. Toxicol., 82, 772–776. https://doi.org/10.1007/

s00128-009-9707-7.

Shannon, M. C., & Grieve, C. M., (1998). Tolerance of vegetable crops to salinity. Scientia

Horticulturae, 78, 5–38. https://doi.org/10.1016/S0304-4238(98)00189-7.

Sharma, S. S., & Dietz, K. J., (2006). The significance of amino acids and amino acid-derived

molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental

Botany, 57, 711–726. https://doi.org/10.1093/jxb/erj073.

Shine, M. B., & Guruprasad, K. N., (2012a). Impact of presowing magnetic field exposure of

seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of

maize under field conditions. Acta Physiol. Plant., 34, 255–265.

Shine, M. B., & Guruprasad, K. N., (2012b). Oxyradicals and PS II activity in maize leaves in

the absence of UV components of solar spectrum. J. Biosci., 37, 703–712.

Shine, M. B., Guruprasad, K. N., & Anand, A., (2012). Enhancement of germination,

growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field.

Bioelectromagnetics, 32(6), 474–484.

Siddique, M. R. B., Hamid, A., & Islam, M. S., (2000). Drought stress effects on water

relations of wheat. Bot. Bull. Acad. Sin., 41, 35–39.

Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K., (2013). Chromium toxicity

and tolerance in plants. Environ. Chem. Lett., 11, 229–254. https://doi.org/10.1007/

s10311-013-0407-5.

Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D’Souza,

S. F., (2010). Comparative evaluation of hydro-, chemo-, and hormonal-priming methods

for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta

Physiol. Plant., 32, 1135–1144. https://doi.org/10.1007/s11738-010-0505-y.

Sugie, A., Naydenov, N., Mizuno, N., Nakamura, C., & Takumi, S., (2006). Overexpression of

wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive

oxygen species under low temperature in transgenic Arabidopsis. Genes Genet. Syst., 81,

349–354. https://doi.org/10.1266/ggs.81.349.

Sung, J., & Chiu, K., (1995). Hydration effect on seedling emergence strength of watermelon

seeds differing in ploidy. Plant Sci., 110, 21–26.

Suzuki, N., & Mittler, R., (2006). Reactive oxygen species and temperature stresses: A

delicate balance between signaling and destruction. Physiol. Plant., 126, 45–51. https://doi.

org/10.1111/j.0031-9317.2005.00582.x.

Taylor, A. G., Allen, P. S., Bennett, M. A., Bradford, K. J., Burris, J. S., & Misra, M.

K., (1998). Seed enhancements. Seed Sci. Res., 8, 245–256. https://doi.org/10.1017/

S0960258500004141.

Thakur, M., Sharma, P., & Anand, A., (2019). Seed priming-induced early vigor in crops: An

alternate strategy for abiotic stress tolerance. In: Hasanuzzaman, M., & Fotopoulos, V.,

(eds.), Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.

org/10.1007/978-981-13-8625-1_8.

Thakur, M., Sharma, P., Anand, A., Pandita, V. K., Bhatia, A., & Pushkar, S., (2020). Raffinose

and hexose sugar content during germination are related to infrared thermal fingerprints of

primed onion (Allium cepa L.) seeds. Front. Plant Sci., 11, 579037. https://doi.org/10.3389/

fpls.2020.579037.